
MICROFLEX 65
. . . lets you expand your AIM 65 or

build a standalone microcomputer system.

Rockwell International
.. .where science gets down to business

Page 2 i\n

EDITORS CORNER FOR YOUR INFORMATION

I'd like to devote an entire issue on the application of AIM 65 to Com

puter Aided Design (CAD).

I remember working out design problems with a calculator and thinking

how much more efficient it was than the slide rule method (at that time,

it was almost against the rules to have a calculator in school). I also

remember having to work out the same equation over and over, changing

one parameter each time, until it came out right. Those types of repet

itive tasks are ideal for the computer to work on.

There must be quite a large number of design problems where param

eters must be changed and solutions checked. One area that immediately

comes to mind is in active filter design. Plenty of equations to work out

and parameters to change here.

I'm sure lhat a number of you are using a BASIC equipped AIM 65 for

CAD. How 'bout sharing some of those programs with the rest of us??°

SUBMITTING ARTICLES

AIM 65/
MICROPRODUCTS
APPLICATIONS
ENGINEER

DEVICE APPLICATIONS
ENGINEER

SERVICE INFORMATION

(714 632-0975 Use this number

when you have technical

questions concerning the

AIM 65 system or are having

difficulty interfacing to the AIM

65.

(714) 632-3860 Use this number

when you have technical

questions concerning individual

6500 family devices whether or

not they are on the AIM 65.

800-351-6018-Call this number

when your AIM 65 is broken and

needs repair. Their address is:

AIM 65 REPAIR

Rockwell International

6 Butterfield Trail Dr.

El Paso, TX 79924

Please try to type your article double spaced. If you can't get to a type

writer, then print neatly. Don’t use the editor on your AIM 65 because

i t is upper case only and will drive a typist to drink. Programs should

be submitted on AIM 65 cassette as a BASIC or assembly language text

file so the program can be assembled on a machine with a wider carriage

printer for increased readability. Use a tape gap of about $20 to com

pensate for any differences in equipment. Your tape will be returned to

you from an appreciative editor.

PUBLISHED PROGRAMS

Several of you have mentioned that you are having problems getting the

A1MPLOT program from issue # 2 to run correctly. Besides the cor

rections to AIMPLOT that are mentioned in this issue. 1 don't know'

where the problem is as of yet, but should have it figured out by the

next issue. If you can't wait, send me a self addressed stamped envelope

and I'll send you the fix when I get it. I will, if at all possible, try to

run the programs that are published in Interactive and ask that all pro

grams be submitted on cassette in source form. (The only program in

this issue that 1 haven't tried is the one in the BASIC USR HELPER

article.)

Editor

COPYRIGHT 1980 ROCKWELL INTERNATIONAL CORPORATION

Rockwell does not assum e any liab ility a ris ing out of the app lica tion or use of any
products, circuit, o r software described herein, neither does it co nve y any I icense
under its patent righ ts nor the patent rights Of others. Rockwell further reserves
the right to make changes in any products herein w ithout notice

LITERATURE &
DISTRIBUTOR/DEALER
INFORMATION

SALES INFORMATION

(714) 632-3729, 800-854-8099

(in California call 800-422-4230)-

Call one of these numbers when

you need literature for a certain

product, information on your

nearest Rockwell dealer/

distributor or to request a

particular application note.

(714) 632-3698-Call this number

when you need price information

for AIM 65 or Microflex 65

accessories or other Rockwell

products.

(714) 632-2190-Call this number

when you want to order spare

parts for your AIM 65. (The

minimum cash order is S10.)

To keep receiving this newsletter, subscribe now! The cost is $5 for 6

issues ($8 overseas). (NO CASH OR PURCHASE ORDERS WILL BE

ACCEPTED) (Payment must be in U.S. funds drawn on a U.S. bank).

All subscription correspondence and articles should be sent to:

EDITOR, INTERACTIVE
ROCKWELL INTERNATIONAL

FOB 3669, RC 55
ANAHEIM, CA 92803

SPARE PARTS

m n iA C im Page 3

MICROFLEX 65 ADD-ON
FAMILY NOW AVAILABLE

The first eight members of the new Microflex 65 products have been

introduced by Rockwell.

The units include a module adapter for single cards, a buffer module that

adapts AIM 65 to multiple-card motherboards, a 4-slot piggyback mod

ule stack, a prototyping module, an extender card for troubleshooting,

an 8K static RAM card, a 16K PROM/ROM card and a two-port asyn

chronous communications interface adapter.

The Microflex 65 bus offers memory addressing up to 128K bytes, high

immunity to electrical noise, and growth provisions for user functions.

The RM65-7101 Single-Card Adapter connects any Microflex 65 module

to the AIM 65 microcomputer’s system expansion connector.

The RM65-7104 Adapter/Buffer Module interfaces the AIM 65 to any

Microflex 65 motherboard and will drive up to 15 modules. The RM65-

7004 4-Slot Piggyback Module Stack (PMS) is the first available card

cage and motherboard assembly in the Microflex 65 family. The compact

PMS form factor allows low-profile packaging of a Microflex 65/AIM

65 system in a desktop or terminal style enclosure. The PMS is $150 in

single quantities.

The RM65-7201 Design Prototyping Module allows Microflex 65 users

to develop their own custom circuits. Power and return lines are pre

routed and plated-through holes allow manual or automatic wire wrap

ping of components and sockets. The RM65-7211 Extender Card pro

vides easy access to circuitry for probing by extending a card from a

cage at enclosure, simplifying signal tracing and troubleshooting.

The RM65-3108 8K Static RAM Module uses R2114 devices arranged

in two 4K memory blocks. Module features include address assignment,

write protect and bank select and enable. The RM65-3216 16K PROM/

ROM Module has eight 24-pin sockets, allowing installation of standard

2K, 4K or 8K ROM or PROM devices.

The RM65-5451 ACIA Module interfaces two independent, asynchron

ous serial I/O channels. Each may operate as a data terminal or a data

set. Channel 1 provides RS-232C and 20 ma current loop interfaces

and Channel 2 is an RS-232C port. Program-selectable features on

each channel include word length, number of stop bits, parity, internal/

external receiver clock source, and 15 data rates from 50 to 19.200 baud.

On-board DC/DC converter allows +5V only operation.

The Rockwell Microflex 65 product line expands the capabilities of the

AIM 65 microcomputer in Industrial, OEM, Educational and Product

Development applications. The Microflex 65 family is available in edge

connector or Eurocard versions.

MORE MICROFLEX 65 “ON THE WAY”

Three additional Microflex 65 family boards (the SBC, a 32K dynamic

RAM, and a GPIO module) are slated for delivery in December 1980.

The SBC (Single Board Computer) features an R6502 CPU, sockets for

up to 16K of PROM/ROM, 2K of 2114 RAM, and an R6522 VIA. The

SBC is ideal for applications which are form-factor sensitive because of

its rather compact board size (about 4" x 6.5") and also for applications

requiring several additional boards because of its compatability with all

the other Microflex 65 cards.

The 32K dynamic RAM is addressable in 4K sections and features a

scheme of refreshing that is complete transparent to the rest of the sys

tem. Write protect and bank select switches are included for increased

versatility. An on-board DC-DC converter furnishes the necessary —5

volts so only +5 and +12 are required from the Microflex 65 bus.

The GPIO (General Purpose Input/Output) module contains two R6522

VIA devices which provide four 8-bit I/O ports and eight control lines.

The 8-bit ports are fully buffered as are the control lines.

The data direction of each I/O port can be under either manual or soft

ware control.

These boards are available in either edge connector or Eurocard versions.

For further information contact your local Rockwell sales office.

PL/65 NOW AVAILABLE

PL/65, an intermediate level system-implementation language, is now

available for the AIM 65.

PL/65 is designed to improve the productivity of the programmer and to

increase program readability. Control statements such as conditional ex

ecution (IF-THEN-ELSE), conditional looping (FOR-TO-BY), coupled

with a simplified block capability, support structured program design

techniques.

The PL/65 compiler generates R6500 assembly language source codc. In

addition, PL/65 allows assembly language instructions to be incorpo

rated in-line in portions of programs where timing or code optimization

requirements are critical. The result is a system implementation lan

guage which has the power and flexibility of assembly language and the

structuring potential of a high-level language.

The AIM 65 PL/65 compiler is contained in two 4k byte ROMs which

plug directly into the AIM 65 BASIC sockets. For further information,

contact Electronic Devices Division, Rockwell International. P.O. Box

3669. Anaheim. CA 92803, (714) 632-3729 or your local Rockwell sales

office.

SOLVING SIMULTANEOUS
EQUATIONS USING BASIC

George Sellers

(ED. NOTE: The first time I entered this program into my system, / tried

to make it “ look nice” by inserting spaces between commands and op

erands. The program wouldn’t run until I eliminated all unnecessary

spaces (it ran out of room). So type the program in EXACTLY as shown.)

Here is a BASIC program you might find of interest for solving simul

taneous equations with up to 20 equations and 20 unknowns. It is directly

transcribed from the FORTRAN program in reference (1) and is based

on what is called the Gauss-Jordan Method with maximum pivot feature.

The program just fits into 4K of RAM on the AIM 65. The following

table shows run times for various numbers of unknowns:

NUMBER OF EQUATIONS RUN TIME IN SECONDS

3 1.325

5 3.015

10 14.325

20 92.485

The input is organized with the coefficients of each equation being a row

of matrix “ A ” which is called the coefficient matrix. The right side of

the equations are organized into a column which is called the constant

matrix “ B .” The solutions are also organized into a column and this

column is called the solution matrix “X . ”

Thus A*X = B in matrix algebra.

The data are entered into the program by way of the prompts for each

column. The coefficient matrix can then be printed out to verify the

accuracy of the input and corrections can be made if necessary. Finally,

the constant matrix can be input and after a short time, the solution

matrix is printed.

If matrix notation is not familiar to you, I suggest you check an advanced

algebra text.

This technique forms the basis of many important types of problems i.e.

network theory, regression analysis, linear programming (see BYTE

magazine for most recent method of trying to solve large systems of

linear equations) and economics (see Sept ’80 Scientific American pg

207) to name a few.

1) Golden, James T.. FORTRAN IV PROGRAMMING AND

COMPUTING, Prentice Hall, Englewood, N.J. 1965

0 ft E n S I M U I... T A N E 0 iJ b E Q U A T 1 0 N !>
1 0 D I M A < 2 0 * 2 1 > p X (2 0) v I...C < 2 0) >• CK (2 0
1 5 I N P U T 1' E N T E R N " ? NM
2 0 F O f t J :- I T O N M I F O R I ~ 1 T 0 N M
4 0 P R I N T COL " i i j ; "ROW “ ■ I r
5 0 I N P U T A (I ? J) i N E X T i 1 N E X T J
6 0 I N PIJ T " C H E C K I N P I.J 1 “ f A N Hi ; I F A N % " M Cl" GO TO 9 0
7 0 F 0 R I 1 TQNM i P R I N T 11::' R I N T " R 0 W “ ? I „ j

/ b F O R J “ 1 T 0 N M ; P R I N T A (I >■J) i
79 N E X T J : NEX' l I i PR I NT
SO I N P U T " C H A N G E I N P U T 11 5 A N * I .1.1- A N * = “ N 0 11 OJ 0 T C.i 9 0
8 5 I N P I J T " f t 0 U v C 0 1... y & MEU VAL. UE 11 ? I » J v A C 1 v J) i C O T 0 8 0
9 0 F" 0 ft I :::: 1 i 0 N M i l;:' ft IN T '' E (“ f I f “) " f
1 0 0 ' I N P U T A (I v NM + 1 > : N E X T I
1 1 0 F 0 ft I = 1 T U N M t C K (I) ~ 0 J N E X 7 I
1 3 0 N P N M - f 1
1 4 0 F 0 ft I :::: 1 T 0 NH

lYTLRACIIVt Page 5

1 7 0 F 0 R K ~ : L T 0 N M
1 8 0 1 1- (A X -- A B 3 (A (K 1 1))) > ” 0 0 0 1 0 2 1 5
1 9 0 I F C K (K) > 0 0 0 7 0 2 1 5
2 0 0 L C (I) = K
2 1 0 A X A B S (A (K !■ I ">)
2 1 5 N E X T K
2 2 0 I F ' A B 8 < A X) < ~ 1 0 E ~ 6 G 0 T 0 5 0 0
2 3 0 C K (L) = 1 . 0
2 4 0 L. = L C< I)
2 5 0 c K (L.) 1 » 0
2 6 0 F 0 R J = 1 T 0 N M
2 7 0 I F (L. - J) ~ 0 0 0 1" 0 3 0 0
2 8 0 F" == - A (J » I) /' A (1... v I)
2 9 0 F O R K = I P T O N P
2 9 5 A (J v K) ~ A (J v K) + F * A (L. y K) t NLX' I
3 0 0 N E X T J
3 1 0 n e x t :
3 1 5 P R I N T 1 S O L U T I O N I S *
3 2 0 F OR I T O N h
3 3 0 L. = L C (1)
3 4 0 X (I) - A (L. •> N M f :i.) / A (L v I }
3 5 0 P R I N T " X < 1 i I i “) • J X < I)
3 6 0 N E X T I
3 7 0 END
5 0 0 P R I N T " A X < 1 0 E - 6 " ; END

RUN CHEC K INPUT? VES
ENTE <“ • N ■■ D ROW 1 5 --i i
CGL F:OW 1 ? 5 -

COL •1 ROW ROW ■“'i

CGL 1 ROW j: ? 1
COL RuW 4 ? 2 ROW 1 •2 4
COL _ ROW 5 ? 4 -i
COL _L. K !J W 1 ? -i ROW d 2 i -i
COL U N i l jL

CGL ROW 3 ? -2 H Li W f 4 6 -5
COL ROW 4 ? 1 T|-
COL w K U W 5 ■■■’ 6 c h h n g e i n f u ^ t NO
COL -• ROW 1 - i E < i 4
C O l «.• ROW 2 - 2 B v 2
COL J ROW G '? 4 EK 0 ■̂? 4
CGL ROW 4 ? -1 B< 4 > -2
COL J ROW ET sr

B (5 >? i
COL 4 ROW i ? i 2 0LU I ION IS
COL 4 ROW jll — V > (L -

C 0 L d ROW J. •! 2234
COL 4 K U W 4 ? -i f ; — 14 ’H H3393
COL L ROW nr _—•

< 4 r- — n-J;.

CGL zr ROW i ? 2 X < 5 ,■ _“
COL — ROW
C 0 L —.j K U W 2 ? - 1
COL ST ROW 4 ? 2
COL c; ROW rr -r-

Page 6 iniTfrKACiivr

LEARN TO TOUCH TYPE

(ED. NOTE: I LIKE this program! Talk about CAI (Computer Aided In

struction). The sound output from the last issue could easily be adapted

into TOUCH to signal the operator he made a boo-boo.)

Mel Evans

1027 Redeemer

Ann Arbor, MI 48103

If you use your AIM 65 keyboard much at all, you can increase both the

speed and the accuracy of your input by learning to touch-type. All it

takes is the right kind of practice, and after you've got it, you’ll be able

to input as fast as you can read the characters, and with almost no typos.

And here’s the best part: you don’t have to go to school to get “ the right

kind of practice.” With the TOUCH program listed in Fig. 1, your

AIM 65 can give it to you whenever, and as long as, you feel like

practicing.

TOUCH is a modification for AIM 65 of a BASIC program written by

Art Armstrong ("‘Thirty Days to a Faster Input,” BYTE, Dec. 79,

p.250). If you try TOUCH and decide you really want to use it, read

Armstrong’s article first: it is full of good tips on how to speed up the

learning process.

A sample run is shown in Fig. 2. The program first asks for a set of char

acters to be used in the practice session. Type in any sequence of printing

characters, ending with RETURN. (Start small, with ASDFG.) The pro

gram prints the selected character set, and then asks for the length and

number of “ words” to be used in the practice session. It then presents

the first “word": a string of characters randomly chosen from the prac

tice set.

Put your fingers on the “ home” keys (ASDF left, JKL; right, as shown

in the BYTE article). Your goal is to type the word without peeking at

the keyboard, but peek if you must at first. After typing a character, re

turn to the “home” keys for reference. As Armstrong says, “The im

portant thing is to always use the same finger for each key. Otherwise the

process cannot become automatic.”

The teaching technique is “operant conditioning” : the instant you press

a wrong key. the printer tells you about it, and you start over with a new

word. After the last word, the program prints your score and a list of the

characters you missed (and number of misses each). You can use this list

to determine which characters to emphasize in the next session, and you

can emphasize them as shown in the second session in Fig. 2. Notice that

the H key was typed five times into the practice set. This makes H occur

five times as often as the other characters in the resulting words.

With printer ON, you get a full record of each session, as in Fig. 2. With

printer OFF, the display is the same, but only mistakes, score, and error

list are printed. (This is done by using PRINT for display-only and

PRINT! for display-and-print.)

Most of the differences between TOUCH and Armstrong’s program are

just conversion to the AIM 65 dialect of BASIC, but there are a few

functional changes. The printout option mentioned above is one. I didn’t

incorporate his “ echo” feature: it would use a lot of paperon the AIM 65

printer, and like he says, it ’s better practice not using it. Another change:

after each session, TOUCH asks you if you want another session with the

same practice characters. To quit, on SAME KEYS AGAIN? type N,

and on WHICH KEYS? hit F I . Now you ’re back in BASIC entry mode.

For reading single keys, TOUCH uses the GET instruction, which is

mentioned, but not fully explained, in the AIM 65 BASIC manual. GET

reads the keyboard and returns with a character. If no key is down, it

returns with the null character. If a key is down, it returns with that sin

gle character. If you GET again while the key is still down, it does not

return until key up, and then returns with the null character.

This makes GET easy to use for entering strings. Observe lines 15-50 in

the listing (Fig. 1). Until you press a key, line 20 repeatedly gets the null

character and line 30 repeatedly adds it to C$ (which of course does not

change C$). When you finally hit a key, it gets added to C$ just once:

GET then waits until you release the key.

But watch out! Observe line 310. It GETs BS; but then, if it is the null

character, GETs again. Otherwise it would proceed to line 350, find that

B$ (the null character) didn't match the word character, and give you an

error. Try deleting that IF, and you will get a score of 0% before you can

reach the first key!

The program as listed runs in about 1350 bytes of RAM. If you oinit

REMs and spaces, it will probably run on a IK AIM 65. Now then.

Don’t just sit there. Read Armstrong's article, and then get busy!

2 REM L E T A I M T E A C H YOU T O U C H - T Y P I N G
4 REM O R I G . BY A R T A R M S T R O N G (B Y T E ? DEC 1 9 7 9 P A G E 2 5 0)
6 REM A I M MOD BY M E L E V A N S (5 / 1 1 / 8 0)
8 REM
1 0 P R I N T “ W H I C H K E Y S ? "
1 2 REM B U I L D K E Y S T R I N G
1 5 C $ ~ " "
2 0 GE T A $
2 2 REM E X I T ON CR
2 5 I F A * = C H R $ (1 3) T H E N 6 0

IHlbllAOllVE Page 7

3 0 C $ = C * + A $
5 0 GOTO 2 0
5 5 REM S T R I N G B U I L T SO P R I N T I T
6 0 P R I N T C * : P R I N T " "
7 0 L.--L.EN (C $) J D I M A (L.)
8 0 I N P U T "WORD S I Z E ' J W L .
9 0 I N P U T "HOW MANY W O R D S “ 5 NT
9 5 REM C L E A R S C O R E C O U N T E R S
1 0 0 N R “ 0 i NP - - 0
1 0 5 REM C L E A R ERROR C OUNT
n o f o r 1 = 1 t o l : a < I) = o : n e x t
2 0 0 FOR T = 1 TO NT
2 0 5 REM B U I L D WORD # T
2 1 0 N P = N P + WL.
2 2 0 A * = " “
2 3 0 FOR 1 = 1 TO WL
2 3 5 REM S E L E C T RANDOM C H A R A C T E R
2 4 0 P = I N T (L # R N D (1) + 1)
2 5 0 A * = A t + M I D $ (C * » P » 1)
2 6 0 N E X T I
2 6 5 REM P R I N T WORD
2 7 0 P R I N T A $
3 0 0 FOR 1 = 1 TO WL.
3 0 5 REM R E A D K E Y & C HE CK FOR MA T C H
3 1 0 GE T B $: i F B * = “ " T H E N 3 1 0
3 5 0 I F B * O M I D * (A * » I » l > T H E N 5 0 0
3 6 0 N R = N R + 1
3 7 0 N E X T I
3 8 0 N E X T T
3 9 0 REM C O M P U T E & P R I N T SCORE
40 0 PR I N T " " t P R I N T !“S C O R E ? " } I N T (10 0 * N R / N P)»
4 0 2 I F N R = N P T H E N 4 1 4
4 0 5 P R I N T ! " E R R O R S ? “ I F O R 1 = 1 TO L I I F A (I) = 0 T H E N 4 1 0
4 0 7 P R I N T ! M I D * (C $? I v 1) ? A (I)
4 1 0 N E X T I
4 1 4 P R I N T " "
4 1 6 I N P U T " S A M E K E Y S A G A I N " ? A $
4 2 0 I F L . E F T $ (A * . 1) = " Y “ T H E N 1 0 0
4 3 0 RUN
4 9 5 REM U P D A T E ERROR COUNT
5 0 0 FOR J = 1 TO I...
5 1 0 I F M I D $ (C $ y J y l) O M I D * (A $ » I * 1 > T H E N N E X T I GOTO 5 2 0
5 1 5 A C J ' J - A C J H l
5 2 0 P R I N T ! ■ * * # * ERROR ON “ i M I D $ (A $ r I r 1)
5 2 5 REM W A I T A B I T % T H E N R E T U R N
5 3 0 FOR 1 = 1 TO 3 0 0 i N E X T
5 4 0 GOTO 3 8 0

Page 8 IY IIII \C 1I \ I

BASIC TIME SAVER
Gordon Smith

Rockwell International

(EDITORS NOTE: According to Gordon, the basis for the program

came from a sim ilar program published in TARGET which he

modified quite extensively and added auto-line numbering. This

article was reprinted from the Rockwell Anaheim Hobby Club

Newsletter.)

This issue I have what 1 think is a real goody for all of you who are

using AIM BASIC and are either marginal or lazy typists or both - I

suspect that includes most of us. I have named the program “ BASIC

HELPER” because that is what it does. It is a combination automatic

line numbcrer and common basic command automatic typist.

I will describe usage of the program first and then how it works. The

program occupies the top two pages of a 4K AIM (0E00-0FFF). Con

sequently when BA SIC is entered via the “ 5 ” Key, you must

respond to the “ M EM O RY S IZE” question with 3584 or less. This

gives you 3054 bytes free for keying-in segments of your program.

Note that this places no limitation on the size of the program you are

kcying-in, because as these 3054 bytes are filled they may be dumped

on tape. Then the next segment with its proper line numbers may also

be keyed in after typing “ N EW .”

As each segment fills memory it is dumped on tape and the next seg

ment then keyed-in. This is permissible on A IM because unlike PET

and APPLE, loading a program from tape does not automatically

wipe out the old program. It appends the later program to the earlier

one and only if both segments have some common line numbers is

there any conflict. In this case any common numbered lines from the

last blocked tape will be the lines that survive.

Sooo - this is an unusual machine language program used with

BASIC because it ultimately takes none of the BASIC space.

After the BASIC is enabled, exit via ESCAPE and load the BASIC

HELPER PROGRAM (or VISA VERSA). I use the FI and F3 keys

to activate automatic line numbering with shorthand and F2 to acti

vate only the shorthand. This later option is used when keying in

someone else's program (or fixes to your own) when nicc even incre

ments between lines arc not achievable.

With the FI keys the display asks “ F R O M = ” to which you respond

with the starting line number desired (delete is allowed or the last four

hex characters will be used-no leading zero’s required). Hit “ space”

or “ RETURN” and the display will prompt with “ IN C = .” At this

point key-in the increment you want and hit “ space” or “ RETURN”

and you are in W ARM START BASIC with the starting line number

already showing. Enter the rest of the line, hit RETURN, and the new

line number is there ready for you.

This automatic line numbering is handy but it is only part of the story.

By using the control key and any of the alphabet keys (Except M) and

F2 and F3 you can also get an automatic entry of what I think are the

most used, longest, or messiest-to-type BASIC commands. For

instance Control I gives you “ IN P U T ,” Control L gives you

“ LEFT$(” etc. There are even some split BASIC commands. Con

trol 0 gives you “ O N ” then you type the variable name or expression

without any spaces. When you key in “ space,” the program com

pletes the GOTO portion of the ON--GOTO statement. Control F3

gives O N —-GOSUB and Control T gives you IF— THEN.

The complete list of shorthand commands and mnenomic aids for

helping to remember them are given in a table following the program

listing and command tables.

As I see it there are three major benefits of this program:

1) It makes it much faster to type

2) There are many fewer typing errors

3) The correct form for these commonly used statements are either

input or prompted (S in strings aid the left (as a prompt)).

The program works as follows: The FI key jumps to 0E00 which

clears the display and then calls the “ FRO M ” subroutine. The line

number is stored in two places OFFB.C where it is held for updating

and OFF1,2 for processing to input it to BASIC which then displays

it. The segment starting at 0E18 inserts a space and then sequentially

outputs INC by three output subroutine calls.

The JSR EAAE at 0E27 is the ADDIN subroutine which is not

described in the manuals. It outputs “ = ” and waits for four (more or

less) hex characters. If less it assumes leading zero; if more it accepts

the last four. The increment value may be as many as four digits and

is stored in OFF3,4. In all of the above cases the data is stored in high

byte-low byte sequence (it is not an address in the conventional

sense).

The segment of the program from OE39 through OE3F sets a Flag in

OFF7 to indicate if the auto increment mode is ON (0 0) or OFF

(FF). The F2 entry point is at OE3D.

The group of instructions from OE42 through OE4E set up the user

input mode (55 in A412 and the user input vector to location OE62 in

Location 0108,9).

The next group through OE5E initializes conditions so that the last

character output (OFF5) was apparently a carriage return so that the

line number will be output if that mode is active. Any value other

than 20 in OFFD is OK-20 indicates that a split command has had the

first part entered and is waiting for the “ space” code to enter the sec

ond segment.

The 0 0 in OFF6 indicates that the program is not in the middle of

inputing a line number.

INTERACTIVE

The segment named ‘USER PROCESSOR’ is the point where the

user input is vectored to. In BASIC at this point, the Y register is

pointing to the BASIC input buffer location for the next key-in so it

must be saved (in this case on the stack). The USER input may have

to turn something on when it is entered the first time so the first time

the carry is clear on subsequent entries the carry must be set. In this

case it doesn’t make any difference so that I could have left out the

instructions in OE64, 66, and 67 and the SEC instructions in OE92

and OECF. But I left them in because I am trying to teach some with

this column too.

The mode decode function works as follows: The test at OE6E deter

mines if the auto-line option is desired-if it is the test at OE72 deter

mines if it is necessary to output a line number or if we are in

process-if the answer is yes we execute the segment at OE94. We will

come back to this later. The test at OE76 determines if we are in pro

cess of generating a command. These in-process tests are necessary

because only one character is generated and supplied to BASIC and

BA SIC comes back for the next one. I f we are in process of

generating a command, the jump at OE78 is executed. Otherwise, we

use the CUREAD subroutine to read a character from the keyboard

and then save it in the last character buffer, OFF5.

This character must be examined to see if it is a control-alpha (OE83)

to start outputing a new command at OEF9 or if it matches (20

matching 20) the split command wait indicator in OFFD (OE88). If

so, the JMP OF1A in OE8A is executed. If it is none of these, it is an

old-fashioned, plain ordinary key stroke input. In this case BASIC ’s

Y register is restored, the input character recovered, and the RTS

takes it back to the BASIC input processing.

The Auto increment processing is performed as follows: The test in

OE97 determines if this is the first digit to be processed. If it is, the

Line input in Process Flat at OFF6 is set to 4 and and also the charac

ter count is checked for zero (OEA4). If it is, the segment of instruc

tions from O EO l through OEF7 restores flags and increments (in

Page 9

decimal) the line number for the next line. This program then returns

to look for the next input character.

If it was not the final pass, the segment from OEA6 through OEBD

shifts the next digit (most significant digit first) into OFFO. OEB4

counts the number of digits down by one and OEC2 through OEC7

converts it to ASCII and holds it in OFFA for output after the BASIC

Y register is restored OECA through OEDO.

If the character input was a control character (value less than IF) the

program will commence from OEF9. Since this entry is for the start

of a new command the code input 01 to IE will be used as a pointer to

the start of text. It is moved to the Y register and is used to point to a

byte in Table 1 “ POINTERS TO START OF EACH C O M M A N D .”

This is accomplished in locations OEF9 through OEFA. That byte is

then used to index the text table. ‘COM M ANDS IN A S C II,” Table

2. The Y value is then incremented and saved for the next pass. If the

input byte was 00 (0F07), it indicates ‘ ‘end of text” so some flags are

restored and the next key is input (OF27 to OF2c). If the input byte

was 20 (OFOB) it indicates a split command so the wait code (20) is

stored in OFFD and the next key is input (OF14-OF17). If neither of

these, the code is output using the sequence of instructions OEC7-

OEDO in the auto- line number output section.

If the 20 matches 20 test in OE88 indicates that the second segment of

a split statement is to be inserted, the program starting at OF1A

through OF25 is executed. This cancels the “ wait” Flag at OFFD

and puts a low value (00) into the last command byte (OFF5) so that it

indicates a shorthand command in-process and then loads the pointer

for the next character of the command. It then continues to execute as

if it were a normal shorthand command.

This is a longer and more complex program than I have generated for

this column before but I think that you will like it. I think I will have

it loaded whenever 1 am keying-in a BASIC program. It saves so

much time and aggravation.

SHORTHAND COMMANDS AND MNEMONIC AIDS

A = ABS(P = POKE

B = TAB(TABBBB Q = RND(QUANTITY

C = MID$(CENTERS R = RETURN
D = DATA S = STR$(
E = RIGHTS (ENDS T = IF+ + +THEN TEST
F = FOR U = USR(

G = GOTO V = VAL(

H = LEN(HOW LONG w = INT(WHOLE VALUE
1 = INPUT X = RESTORE X-OUT READ

J = GOSUB JUMPSUB Y = READ PARAMETER

K = GET GET KEY Z = STEP SIZZZE
L = LEFTS! FI = IS NOT USABLE

M = IS NOT USABLE F2 = DEFFN FUNCTION

N = NEXT F3 = ON+++GOSUB

O = ON-+ +GOTO

Page 10

OlOC 4C JMP OEOO

010F 4C JMP 0E3D

0112 4C JMP OEOO

BASIC HELPER PROGRAM

OEOO 20 JSR E9F0

0E03 20 JSR E7A3

0E06 ADLDA A41C

0E09 8D STA 0FF2

OEOC 8D STA OFFC

OEOF ADLDA A41D

0E12 8D STA OFFB

0E15 8D STA 0FF1

INPUT INCREMENT

0E18 20 JSR E83E

0E1B A9 LDA #49

0E1D 20 JSR E97A

0E20 A9 LDA #4E

0E22 20 JSR E97A

0E25 A9 LDA #43

0E27 20 JSR E97A

0E2A 20 JSR EAAE

0E2D ADLDA A41C

0E30 8D STA 0FF4

0E33 ADLDA A41D

0E36 8D STA 0FF3

BYPASS AUTO LINE NO,

0E39 A9 LDA #00

0E3B FO BEQ 0E3F 02

0E3D A9 LDA #FF

0E3F 8D STA 0FF7

SET UP USER INPUT

0E42 A9 LDA #55

0E44 8D STA A412

0E47 A9 LDA #62

0E49 8D STA 0108

0E4C A9 LDA #0E

0E4E 8D STA 0109

PARAMETER SET UP AND GO TO WARM START

0E51 A9 LDA #0D

0E53 8D STA OFF5

0ES6 8D STA OFFD

0E59 A9 LDA #00

OESB 8D STA 0FF6

0E5E 4CJMP B003

USER/PROCESSOR

0E62 98 TYA

0E63 48 PHA

0E64 BO BCS 0E68 02

0E66 68 PLA

0E67 60 RTS

MODE DECODE---SUBSTITUTE OR READ

0E68 AC LDY 0FF5

0E6B ADLDA 0FF7

0E6E DO BNE 0E74 04

0E70 CO CPY #0D

0E72 FO BEQ 0E94 20

0E74 CO CPY #1F

0E76 BO BCS 0E7B 03

0E78 4C JMP OFOF

0E7B 20 JSR FE83

0E7E 8D STA 0FF5

0E81 C9 CMP #1F

0E83 90 BCC 0EF9 74 OFOF AC LDY OFFE

0E85 CD CMP OFFD 0F12 DO BNE OEFE EA

0E88 DO BNE 0E8D 03 0F14 8D STA OFFD

0E8A 4C JMP 0F1A 0F17 4C JMP 0E7B

0E8D 68 PLA 0F1A A9 LDA #00

0E8E A8 TAY 0F1C 8D STA OFFD

0E8F ADLDA 0FF5 0F1F 8D STA 0FF5

0E92 38 SEC 0F22 AC LDY OFFE

0E93 60 RTS 0F25 DO BNE OEFE D7

0F27 A9 LDA #20

AUTO-INCREMENT 0F29 8D STA 0FF5

0E94 ADLDA 0FF6 0F2C 4C JMP 0E7B

0E97 DO BNE 0EA1 08

0E99 A9 LDA #04 POINTERS TO START OF EACH COMMAND

0E9B 8D STA 0FF6 <M> = 0FD1 00 01 06 OB
0E9E 8D STA 0FF8 < > 0FD5 11 16 IE 22

0EA1 ADLDA 0FF8 < > 0FD9 27 2C 32 38
0EA4 FO BEQ 0ED1 2B < > OFDD 3C 43 45 4A
0EA6 A9 LDA #00 < > 0FE1 52 57 5C 63

0EA8 8D STA OFFO < > 0FE5 69 71 76 7B
OEAB A9 LDA #04 < > 0FE9 80 88 8D 8D

OEAD 8D STA 0FF9 < > OFED 8D 94 9A

OEBO 18 CLC

0EB1 2E ROL 0FF2 COMMANDS IN ASCII

0EB4 2E ROL 0FF1 <M> = 0F30 41 42 53 28
0EB7 2E ROL OFFO < > 0F34 00 54 41 42

OEBA CE DEC 0FF9 < > 0F38 28 00 4D 49

OEBD DO BNE OEBO FI < > 0F3C 44 24 28 00
OEBF CE DEC 0FF8 < > 0F4O 44 41 54 41

0EC2 AD LDA OFFO < > 0F44 00 52 49 47
0EC5 69 ADC #30 < > 0F48 48 54 24 28
0EC7 8D STA OFFA < > 0F4C 00 46 4F 52

OECA 68 PLA < > 0F50 00 47 4F 54
OECB A8 TAY < > 0F54 4F 00 4C 45
OECC AD LDA OFFA < > 0F58 4E 28 00 49
OECF 38 SEC < > 0F5C 4E 50 55 54
OEDO 60 RTS < > 0F60 00 47 4F 53

< > 0F64 55 42 00 47
PREPARE FOR NEXT LINE < > 0F68 45 54 00 4C
0ED1 A9 LDA #20 < > 0F6C 45 46 54 24
0ED3 8D STA 0FF5 < > 0F70 28 00 OD 00
0ED6 A9 LDA #00 < > 0F74 4E 45 58 54
0ED8 8D STA 0FF6 < > 0F78 00 4F 4E 20
OEDB F8 SED < > 0F7C 47 4F 54 4F
OEDC 18 CLC < > 0F80 00 50 4F 4B
OEDD AD LDA OFFC < > 0F84 45 00 52 4E
OEEO 6D ADC 0FF4 < > 0F88 44 28 00 52

0EE3 8D STA OFFC < > 0F8C 45 54 55 52
0EE6 8D STA 0FF2 < > OF90 4E 00 53 54
0EE9 AD LDA OFFB < > 0F94 52 24 28 00
OEEC 6D ADC 0FF3 < > 0F98 49 46 20 54
OEEF 8D STA OFFB < > 0F9C 48 45 4E 00
0EF2 8D STA 0FF1 < > OFAO 55 53 52 28
0EF5 D8 CLD < > 0FA4 00 56 41 4C
0EF6 B8 CLV < > 0FA8 28 00 49 4E

0EF7 50 BVC 0E7B 82 < > OFAC 54 28 00 52

< > OFBO 45 53 54 4F

SHORTHAND COMMAND INSERTION < > 0FB4 52 45 00 52

0EF9 A8 TAY < > 0FB8 45 41 44 00

OEFA B9 LDA OFDl.Y < > OFBC 53 54 45 50

OEFD A8 TAY < > OFCO 00 00 00 44

OEFE B9 LDA 0F2F.Y < > 0FC4 45 46 46 4E
0F01 C8 INY < > 0FC8 00 4F 4E 20

0F02 8C STY OFFE < > OFCC 47 4F 53 55
0F05 C9 CMP #00 < > OFDO 42

0F07 fo BEQ 0F27 IE (EDITOR'S NOTE: If you’d like a set of stick-on labels for the basic
0F09 C9 CMP #20 1 , „
OFOB fo BEQ 0F14 07 one-key entry program, send SI to Ron Riley, POB 4310. Flint.

OFOD DO BNE 0EC7 B8 Mich. 48504. These Labels are printed on adhesive-backed stock

with all the proper Basic commands printed on them.)

Page 11

PROM PROGRAMMER CARD
FOR AIM 65

A PROM Programmer and Code Editor (CO-ED) module is now avail

able as a plug-on peripheral for the AIM 65 printing microcomputer from

Rockwell.

The PROM memory devices programmed with the new module may then

be used with any 6500-based system, including AIM 65, Microflex 65,

and SYSTEM 65.

The module provides PROM check, read and verify functions in addition

to programming. Data load, verify and dump, each with offset, and an

object code editor (CO-ED) are additional features included in the mod

ule’s built-in ROM firmware. CO-ED controls a program pointer and can

search, disassemble and modify R6500 object code programs.

The PROM programmer CO-ED module, part number A65-901. plugs

directly into the expansion connector of the AIM 65 microcomputer. The

module includes IK byte of R2114 static RAM which, when used with

the 4K RAM AIM 65 model, allows single-pass programming of 4K x
8 PROMs. It also includes internal logic to select PROM programming

characteristics for the Intel 2758, 2716, or 2732, or the TI 2508, 2516 or

2532 without switch or jumper changes.

The module requires only a single supply voltage, +5 VDC (5. 0.7 amp.

which is usually available from the power supply for the host AIM 65.

Appropriate PROM programming voltage levels are generated by an on

board DC-DC converter.

The module measures approximately 4.4 inches wide by 6.7 inches long

and is fully assembled, tested and warranted.

For more information contact the Electronic Devices Division of Rock

well International, P.O. Box 3669, Anaheim, CA 92803. Telephone

(714) 632-3729 or your local Rockwell sale office.

R6551 ACIA CHIP NOW
AVAILABLE

The R6551 Asynchronous Communication Interface is now available

from Rockwell. This new device offers several advantages over older

ACIA designs. The main advantage is that the R6551 contains its own

on-chip baud rate generator with 15 program-selectable rates from 50

baud to 19,200 baud. The only additional component required is a stan

dard 1.8432 MHZ crystal.

The R6551 has programmable word lengths of 5, 6, 7, or 8 bits; even,

odd, or no parity; and 1, 1 Vi or 2 start bits. Besides the normal interface

control lines (RTS-Request To Send, CTS-Clcar To Send, and DCD-

Data Carrier Delect) the R6551 provides two additional lines, to further

cnhance the modem interface. These two lines are DTR-Data Terminal

Ready (which indicates the R6551 status to the modem) and DSR-Data

Set Ready (indicates the status of the modem to the R6551).

The built-in programmable baud rate generator offers certain advantages

to the system designer. Since fewer external components are required for

boards designed around the R6551, more compact and/or more densely-

designed systems are possible. This in turn translates to a cost savings

which can become very substantial as the quantity of systems to manu

facture increases.

For data sheets and more information on the R6551 ACIA contact your

local Rockwell sales office.

NEW APPLICATION NOTE

A new application note entitled PRINTER CONTROL WITH THE

R6522 is (document #256) is now available from Rockwell. This note

describes how the AIM 65 can be used to directly control all the func

tions of a dot matrix printer mechanism through the on-board user R6522

VIA chip. The printer mechanism chosen is the Two-Day Corporation

80 column bidirectional 10600 scries.

This 24 page app. note actually contains two complete software/hard

ware interface schemes— one for each of the two printer mechanisms

available from the Two-Day Corp.

One of the models (the 10600A) has a synchronous motor drive while the

other (the 10600B) has a stepper motor drive and an independent paper

feed.

For a copy of this or other app. notes write: Literature Request,

Rockwell International, Box 3669 RC55, Anaheim, CA 92803. Be sure

to specify the document numbers.

Page 12

INTERRUPT DRIVEN
KEYBOARD

Maivin DeJong

Pt. Lookout, MO

(Ed. note-Although the author cites amateur radio as an example ap
plication fo r an interrupt driven keyboard, this technique is ju s t as re-
levent in the possible industrial uses o f the A IM 65. Interrupt driven
systems are becoming increasingly useful in data gathering applica
tions as well as machine control areas.)
The AIM 65 Monitor polls the AIM 65 keyboard for key depressions by

calling subroutines. These subroutines wail for a key to be depressed be

fore continuing to execute the commands that have been entered or be

fore continuing to process the data that have been entered. There are

certain situations in which this treatment of the keyboard is undesirable.

In this application note such a situation is described, and a routine to read

the keyboard on an interrupt basis is described.

Suppose an amateur radio operator wishes to use the AIM 65 to send

either Morse code or RTTY (radioteletype). The AIM 65 monitor rou

tines could be used for this, but the send routine would have to wait for

a key depression before it could send the character, and the operator

would have to wait for the send routine to finish sending the character

before he could type in a new character. The usual technique calls for a

buffer that stores the characters typed on the keyboard, and concurrently

sends the characters at a prescribed speed. Thus, the operator can type

in characters as quickly as he can type, and the send routine empties the

buffer at the prescribed speed. This form of keyboard operation is diffi

cult, if not impossible, to achieve with the AIM 65 monitor software

which, in addition to reading the keyboard, must also debounce the keys.

An alternative approach is to let the send program (or any other program

in which this interrupt approach is usedl continue operating, but use a

regular interrupt to scan the keyboard to see if any new characters have

been entered. If a new character has been entered on the keyboard, it can

be stored in a buffer to await its turn to be processed by the main pro

gram. If no new character has been keyed, the interrupt routine branches

around the buffer storage instructions.

The listings given here form a routine that will read the AIM 65 keyboard

on an interrupt basis. The initialization routine sets up the interrupt vec

tor to point to the interrupt routine at SOBFF (of course, the locations of

all of these routines may be changed). Next the initialization routine sets

up the Tl timer on the user's 6522 to produce equally spaced interrupts,

at five millisecond intervals. (Longer intervals can also be used, but

shorter intervals may produce keybouncc errors.) The last instruction in

the initialization routine produces an infinite loop that simulates the

user's main program, a Morse code send program for example.

The interrupt routine starting at SOBFF is very similar to the AIM 65

GETKEY subroutine in the AIM 65 monitor. Most of the coding is taken

from that routine, with some important modifications to make it operate

on an interrupt basis. Note that all the registers are saved by the interrupt

routine. Also note that the interrupt routine contains a JSR SODOO in

struction. If a key depression is detected, then the accumulator contains

the ASCII representation of the key just prior to the JSR SODOO in

struction. The subroutine at SODOO is expected to place the accumula

tor contents in a memory location where it can be processed by the main

program, a buffer for example.

Finally, we have included a display routine at SODOO that displays the

key just pressed on the AIM 65 display. This routine is included to test

the initialization and interrupt routines. It has no other use.

f I / O
U T I L = $ A 0 0 4
U T 1 C H = * A 0 0 5
IJT 1 L .L = * A 0 0 6
UARC = * A O O B
U I E R = * A O O E
I R Q U 2 = $ A 4 0 4
C P I Y = $ A 4 2 A
C PIY .1. = * A 4 2 B
R O L L F L = * A 4 7 F
D R A 2 = $ A 4 8 0
D R B 2 $ A 4 8 2
0 M O N I T O R S U B R 0 U I T N E S
O N E K E Y = * E D 0 5
0 N E K 2 = * E D O B
01JTDD 1 ==4»tF 7 B
P H X Y = * E B 9 E
PL.XY = * E B A C
ROW 1 = * F 4 2 1

2 0 0 0 # = $ 0 E 0 0
OEOO
OEOO A 9 F F L D A # < I N T R N
0 E 0 2 (3D 0 4 A 4 S T A I R Q V 2
0 E 0 5 A 9 OB L D A # > I N T R N
0 E 0 7 8 D 0 5 A 4 S T A I R Q U 2 + 1
OEOA 7 8 S E I
OEOB y
OEOB v S E T T 1 S C B 1 I N T F L A G
OEOB A 9 CO L D A # * C 0
OEOD 8 D OE AO S T A U I E R
0 E 1 0 y
0 E 1 0 ?
0 E 1 0 y S E T T l I N F R E E
0 E 1 0 5 R U N N I N G MODE
0 E 1 0 A 9 4 0 L D A # $ 4 0
0 E 1 2 8D OB AO S T A U AR C

INTERACTIVE
0 E 1 5 y

0 E 1 5 y S E T T.1. L A T C H E S
0E1.5 A9 88 L.BA # $ 8 8
0 E 1 7 8B 06 AO S T A U T 1 L L

0 E 1 A A9 :L3 L D A # $ 1 3
0 E 1 C 8D 05 AO S T A U T 1 C H
0 E J. F 58 CL I

0 E 2 0 y
0 E 2 0 v P R O G R A M S I M U L A T I O N
0 E 2 0 ME
0 E 2 0 AC 20 OF J M P ME

0 E 2 3 * = * O B F F

O B F F
O B F F y S A V E R E G I S T E R S

O B F F INT R N

O B F F 48 PH A
or.; 00 20 9E EB J S R P H X Y

0 C 0 3 y
0 C 0 3 y C L E A R Tl INT
0 C 0 3 AD 04 AO LD A U T I L
o t; o 6 y
0 C 0 6 y S E E IF K E Y D O W N
0 C 0 6 AD 82 A4 L D A D R B 2

0 C 0 9 C9 FF C M P # $ FF
O C O B FO 07 B E Q R0 0 1
o c o n y

o c o n y A C C E P T L A S T K E Y

o c o n OD 7F A4 O R A R O L L F L
0 C 1 0 y

0 C 1 0 J I N V E R T S T R O B E S

0 C 1 0 49 FF E O R # $ F F
0 c :i. 2 DO 43 B N E R O O N E K

0 C 1 4 y

0 C 1 4 y C L E A R M A S K
0 C 1 4 ROOl

0 C 1 4 A 2 00 L D X # 0 0
0 C 1 6 BE 2 A A4 S I X C P I Y
0 C 1 9 y

0 C 1 9 y G (!) T H R O U G H KB O N C E
0CJ.9 SAND R E T U R N IF A N Y
0 C 1 9 5 K E Y

0 C 1 9 ? Y=R(DW < 1 ~ 8) & S T B K E Y

O C 19 y - C O L U M N * IF NO K E Y
O C 19 y Y :::: 0 v

0 C 19 S T B K E Y “$ FF
0 C 19 y
0 C 1 9 20 05 ED J S R O N E K E Y
OC 1C 88 D E Y
o c i n 30 7C BMI N O K E Y
0 C 1 F y

0 C 1 F J C H C K C L M N 5 y 6 y 7
OC IF A 9 BF L D A # $ 8 F
0C21 8 D 80 A4 S T A D R A 2

Page 13

0 C 2 4 f
0 C 2 4 5 C H E C K ROW 1
0 C 2 4 AD 8 2 A 4 L D A D R B 2
0 C 2 7 4 A L.SR A
0 C 2 8 y
0 C 2 8 ? I F = l y NO C T R L OR
0 C 2 8 J S H I F T
0 C 2 8 BO 2 0 B C S G E T K 1
0 C 2 A y
0 C 2 A y C L M N 5 y 6 y 7 (CNTRL..
0 C 2 A f S H I F T L y S H I F T R)

0 C 2 A A 2 0 3 L D X # $ 3
0 C 2 C y
0 C 2 C y C T R L OR S H I F T y W H I C H
0 C 2 C A 9 7 F L D A # $ 7 F
0 C 2 E G E T K O
0 C 2 E 3 8 SEC
0 C 2 F 6 A ROR A
0 C 3 0 4 8 PH A
0 C 3 1 y
0 C 3 1 y L E T S GE T C T R L L OR
0 C 3 1 f S H I F T I N T O X
0 C 3 1 2 0 OB ED J S R 0 N E K 2
0 C 3 4 AD 8 2 A 4 L D A D R B 2
0 C 3 7 y
0 C 3 7 y O N L Y ROW 1
0 C 3 7 4 A L..SR A
0 C 3 8 9 0 0 6 BCC G E T K O O
0 C 3 A 6 8 P L A
0 C 3 B CA DEX
0 C 3 C DO FO B N E G E T K O
0 C 3 E y
0 C 3 E y NO K E Y y SO E X I T
0 C 3 E FO 5 B B E Q N O K E Y
0 C 4 0 y
0 C 4 0 r G E T S T B K E Y I N T O X
0 C 4 0 G E T K O O
0 C 4 0 6 8 P L A
0 C 4 1 y
0 C 4 1 y C L M N I N T O X
0 C 4 1 AD 2 B A 4 L D A C P I Y 1
0 C 4 4 y
0 C 4 4 y C O M P L E M E N T S T R B S
0 C 4 4 4 9 F F EOR # $ F F
0 C 4 6 y

0 C 4 6 y C T R L OR S H I F T TO X
0 C 4 6 AA T A X
0 C 4 7 y
0 C 4 7 y S E T MS K == $ 0 1
0 C 4 7 EE 2 A A 4 I N C C P I Y
0 C 4 A y
0 C 4 A y NOW G E T ANY K E Y
0 C 4 A G E T K 1
0 C 4 A 2 0 0 5 ED J S R O N E K E Y

INTERACTIVE

0 C 4 H r 0 0 7 1 J S H I F T
0 C 4 D f O H O K T H E ROW (1 - 8) 0 C 7 1 FO 2 4 BEQ G E T K 7
0 C 4 D 8 8 DEY 0 C 7 3 i
0 C 4 E 9 0 0 7 3 y C T R L ?
0 C 4 E y C H C K I F C T R L OR 0 C 7 3 2 9 1 0 A ND # $ 1 0
0 C 4 E J S H I F T 0 0 7 5 V

0 C 4 E DO 0 9 B N E G E T K 1 B 0 0 7 5 »NQy GO G E T K 5
0 C 5 0 t 0 C 7 5 FO 0 6 B EQ G E T K 5
0 C 5 0 y E N T E R E D L A S T 0 C 7 7 6 8 P L A
0 C 5 0 AD 2 B A 4 L D A 0 P I Y 1 0 C 7 8 y
0 C 5 3 V 0 0 7 8 y MASK O F F 2 MSB FOR
0 C 5 3 V 0 C 7 8 y C O N T R O L
0 C 5 3 5 I F C L MN 5 y 6 y y 8 DO 0 0 7 8 2 9 3 F AND # $ 3 F
0 C 5 3 P I T A G A I N 0 0 7 A y
OC 5 3 0 9 F 7 CMP # $ F 7 0 0 7 A P E X I T TO D I S P
0 C 5 5 BO 0 4 B C S G E T K 2 0 0 7 A 4 0 9 8 0 0 J M P G E T K 8
0 C 5 7 5 0 0 7 D G E T K 5
0 C 5 7 v G E T C T R L OR S H I F T 0 0 7 D 6 8 P L A
0 C 5 7 ROONE K 0 C 7 E P S A V E I T
01157 9 0 4 2 BCC N O K E Y 0 C 7 E 4 8 PH A
0 C 5 9 G E T K 1 B 0 C 7 F ?
0 0 5 9 3 0 4 0 B M I N O K E Y 0 C 7 F y IF" A L P H A C H A R S DO
0 0 5 B G E T K 2 0 0 7 F y NOT S H I F T
0 C 5 B EA NOP 0 C 7 F 2 9 4 0 AND # $ 4 0
0 C 5 C EA NOP 0 0 8 1 DO 1 4 BNEi G E T K 7
0 0 5 D EA NOP 0 0 8 3 6 8 P L A
0 C 5 E y 0 0 8 4 4 8 PH A
0 C 5 E 5 M U L T BY 8 0 0 8 5 ?
0 C 5 E 9 8 T Y A 0 0 8 5 y O N L Y L S B
0 C 5 F OA AS I... A 0 0 8 5 2 9 OF AND # $ 0 F
0 0 6 0 0 A A 81... A 0 C 8 7 r
0 C 6 1 OA ASL. A 0 0 8 7 y DO NOT I N T E R C H A N G E
0 C 6 2 y 0 0 8 7 y (S P A C E) OR 0
0 0 6 2 5 NOW A HAS ROW A DD R 0 0 8 7 FO OE BEQ G E T K 7
0 C 6 2 f FROM ROW 1 0 0 8 9 ?
0 0 6 2 A 8 T A Y 0 0 8 9 y A G O “ $ 0 0 ?
0 C 6 3 y 0 0 8 9 0 9 0 0 CMP # $ 0 0
0 c 6 3 y ADD CLMN TO Y 0 0 8 B r
0 C 6 3 AD 2 B A 4 L D A C P I Y l 0 C 8 B J Y E S A C C > = $ 0 0
0 C 6 6 G E T K 3 0 0 8 B BO 0 5 B C S G E T K 6
0 C 6 6 4 A L.SR A 0 C 8 D i;
0 0 6 7 9 0 0 3 BCC Gt i : TK4 0 C 8 D y E X I T
0 0 6 V 0 8 I N Y 0 0 8D 6 8 P L A
0 C 6 A DO F A B N E G E T K 3 0 0 8 E 2 9 EF AND # $ E F
0 0 6 C V 0 0 9 0 DO 0 6 B NE G E T K O
0 C 6 C J G E T T H E CI-IR 0 0 9 2 y
0 0 6 0 G E T K 4 0 0 9 2 ? a o c : > $ 0 c
0 C 6 C B 9 2 1 F 4 L D A R O W l y Y 0 0 9 2 G E T K 6
0 0 6 F 4 8 PI-1 A 0 0 9 2 6 8 P L A
0 0 7 0 y 0 0 9 3 V

0 C 7 0 y CTRL.. OR S H I F T U S E D ? 0 0 9 3 w

—
1 !!

0 0 7 0 8 A T X A 0 C 9 3 0 9 1 0 ORA # $ 1 0
007:1. y 0 0 9 5 DO 0 1 B N E G E T K 8
0 0 7 1 5 B RC H I F NO C T R L OR 0 0 9 7 G E T K 7

Page 15

SUPER SIMPLE
AUTOSTART

Under normal circumstances, when power is applied to the AIM 65, the

reset line is automatically asserted by the power-on-reset circuitry asso

ciated with the 555 timer (Z4) and the CPU starts executing the reset

sequence contained in the Monitor ROM.

While this sequence of events is fine for most uses, there are others, such

as OEM installations and dedicated controller applications, which re

quire that the system comes up running a user written operating program

without the need for any special operator intervention.

The first solution that usually comes to mind involves the replacement of

the Monitor ROMS. However, there is an easier way to accomplish the

same effect without having to sacrifice all those built-in I/O drivers.

The only restriction is that the user program must start at address SBOOO,

SB003, or SDOOO (corresponding to the ‘5 .’ ‘6 ’ or ‘N ’ key vectors).

If you have the Assembler or BASIC ROMs installed in your system, try

holding down the ‘N ’ key (or ‘5' key) while you turn on the power. No

tice how it comes up running in the assembler?

In a dedicated controller application, where the keyboard isn’t being

used, the same effect can be achieved by installing a 16-pin DIP header

in the keyboard socket on the main board and shorting the two pins that

correspond to the ‘5 ,’ ‘6 ’ or ‘N ’ key.

If you wish the system to automatically jump to SBOOO on power up,

short pins 11 and 13 on the DIP header (pins 12 and 14 for address

SB003) or pins 3 and 14 for a starting address of SDOOO.

For OEM applications where the keyboard is still needed, the same effect

can be achieved by temporarily shorting the correct pins with a reed re

lay driven by a timer chip. The time constant should be slightly longer

than that of the power-on-reset timer (Z4) for proper operation.

CORRECTIONS TO ISSUE
#2

In the DISASSEMBLER UTILITY on page 11, the periods should be

removed from in front of the labels DEB and LECT in the source listing.

The OFFSET LOADER program on page 13 was missing the immediate

symbol (#) from all four of the immediate instructions (locations 0200,

0205, 0222, and 0252).

In the W E ’VE GOT OUR EARS ON article on page 10, the correct Post

Office box is 3669 (not 33093).

A note table was left out of the AIM 65 SOUND article on page 8. It

belongs right before the section headed “ HERE’S HOW TO MAKE

MUSIC” .

0 C 9 7 (!) 8 P L A B0=251 (B below first C) B= 124

0 0 9 8 ? C=237 (first C) C l = 117 (C above first C)

0 C 9 8 y G 0 n I S P L A Y C#=224 Cl # = 111

0 C 9 8 G E T K 8 D = 211 D1 = 104

0 0 9 8 2 0 0 0 o n J S R D I S P O =#! II D l# =99

0 C 9 B ? E= 188 El =93

0 C 9 B J R E S T O R E R E G I S T E R S F= 177 FI =88

0 C 9 B NO K EY F# = 167 F l# = 83

0 C 9 B 2 0 AC ED J S R P L X Y G= 157 G1 =78

0 C 9 E 6 8 P L A G # = 149 G l# = 73

0 C 9 F A 9 0 0 L D A # $ 0 0 A= 140 A1 = 69

0 C A 1 8 D 2 A A 4 S T A C P I Y A# = 132

OCA 4 4 0 R T I
OCA 5 *- •$ onoo In the AIMPLOT program on page 4, the opcode at location 0232 should

0 D 0 0
on oo I) I S P

be 8D (not BD). Also, the bit instructions at locations 02A9 and 02BA

are somewhat misleading. What the author really needed in this situation

onoo A 2 13 i... n x #$13 was a BIT IMMEDIATE instruction . But, as the 6502 doesn't have such

0 D 0 2 0 9 8 0 GRA # $ 8 0 an instruction, he had to simulate it. He did this by finding the proper bit

o n o 4 y pattern in the AIM 65 monitor ROMS and using the address of this bit

0 1)0 4 $ C O N V E R T X I N T O ADDR pattern as the operand instead of the bit pattern itself thereby accom

0 1)0 4 y F 0 R I)i I S P L A Y plishing the same effect as a BIT IMMEDIATE instruction.

o n 0 4 20 7B E F J S R OUTDDJ.
on 07 60 R T S Has anyone generated a table of all the bit patterns (S00-SFF) available

0 D 0 8 ♦ END in the AIM 65 monitor ROMS? I ’d sure like to publish it.

Page 16 INTEKACIIVh

LETTERS TO THE EDITOR
Dear Editor

I would like to see a clearer explanation of how to output data to the

printer than that illustrated in the AIM 65 Users Manual, ref Chapter 7.

I would like to write an assembly language program, and then at some

poinl in that program have the printer print the contents of either one of

the index registers, accumulator, or a memory location. Quite simply

put, I'd like an easy to follow subroutine that would do as shown:

LDA XXXX ;some memory location

JSR PRINT ;print contents of acc.

then return to a users program.

Is there an easy way to do this?

Thank you

R. A. Fairman

Mr. Fairman.

There is a subroutine called NUMA ($EA46) that will output a hex value

in the accumulator as two ASCII digits, but if the printer is not enabled,

it will just be sent to the display. So, to do what you want will require

making sure the printer is on before you JSR to NUMA. The best way to

accomplish this is with a short subroutine that gets included in your pro

gram. The subroutine will have to save the present printer flag from

PRIFLG ($A4I I), force the printer flag on by making it $80, do a JSR to

NUMA, and then restore the printer flag to whatever it was before.

PRTBYT SEC

ROR PRIFLG

JSR NUMA

ASL PRIFLG

CLC

RTS

Bit 7 is the only bit in the printer flag (PRIFLG) that has any meaning.

It is this bit that gets tested to see if output gets sent to the printer (see

line 2411 and 2412 in the AIM 65 monitor listing for an example of test

ing the printer flag). This means that the remaining 6 bits are free for

our use. The first thing that is done upon entry to PRTBYT is to set the

carry flag to a ‘ I .' This will be put into bit 7 of the print flag location b\

the ROR PRIFLG instruction to "turn the printer on." The ROR PRIFLG

instruction actually does two things. First, it rotates the carry flag into

the bit 7 position of the printer flag (which turns the printer on) and also

saves the previous print flag in bit 6 so it can be restored after we’re

finished. The instruction JSR NUMA outputs the character to the printer.

To restore the printer flag to its original condition we execute the ASL

PRIFLG instruction. This simply shifts bit 6 back to the bit 7position and

moves the 7 ' which wax shifted into the bit 7 position from the carry flag

back to the carry flag. The carry flag is then cleared to prepare for our

return to the main routine.
the Editor

Dear Sir,

Congratulations on a really-usable, cost-effective AIM65 and now a

newsletter to match.

ADDITION TO MARK REARDONS REAL TIME CLOCK

(issue #1 p. 11)

250 REM NOW THE TIME IS H HOURS, M MINUTES, S

SECONDS

251 REM BUG! NOT IF H OR M CHANGED WHILE PEEKING.

252 REM IF THEY DID TIME COULD BE OUT BY ONE HOUR.

253 REM FIX! TO DOUBLE CHECK THE TIME.

254 IF PEEK(220) = H OR PEEK(221)=M THEN GO TO 240

255 REM NOW! THE TIME IS H HOURS, M MINUTES. S

SECONDS.

^ = NOT EQUAL TO (sorry, no arrows).

SORRY! YOU LOSE YOUR BET we did know how to edit BASIC pro

grams but bet you didn’t know you don’t need tape to do it.

If memory is split between the EDITOR and BASIC then a LOAD can

be done using the memory read routine used by the Assembler. The pro

cedure is described below and assumes you have 4K of memory to be

split down the middle to the EDITOR and BASIC.

1. Allocate the MREAD routine (FADO) to the user input vector at

HEX 0108. 0108 = DO 0109 = FA.

2. Initialize BASIC answering 2047 to MEMORY SIZE? prompt.

From here on only re-enter BASIC using command “ 6 .”

3. Escape from BASIC and initialize the EDITOR answering: FROM

“ 800’’ TO “FFF” to the prompts. From here on only re-enter the

EDITOR using command “T ."

4. You may now load your program into the EDITOR with the usual

commands. Entry may be either from tape or the keyboard but ob

serve the following rules;

a. The top line must always be a SPACE only.

b. The bottom line must always be CONTROL Z only.

c. Always exit the EDITOR using “ T ” then “Q ” . This leaves the

pointer on the top line.

5. When you want to LOAD your program into BASIC exit the EDI

TOR and re-enter BASIC. LOAD in the usual way but answer “ U "

to the IN prompt where upon you will find your program being

zapped into BASIC memory space.

6. You may now RUN your program in the usual way but escaping to

the EDITOR when editing is required and then re-load the program

into BASIC for executing.

INTERACTIVE Page 17

7. Sometimes you may find it more useful to do program modifica

tions direct on the BASIC program leaving the EDITOR unaltered

so you can quickly restore the original by re-loading. To re-load

you must re-enter the EDITOR to get the pointer on the top line

otherwise nothing will get loaded.

This EDITOR-BASIC technique has hidden depths which only become

apparent with use and the application of a little ingenuity. So get to it!

Here are some clues.

1. The EDITOR can have direct commands entered into it such as

NEW or RUN and these will be directly executed as the program

is loaded.

2. Normal program statements may be entered without line numbers

and these will be directly executed as well. This is particularly use

ful for POKEing in machine code without-occupying BASIC pro

gram space.

3. If the EDITOR contains two lines with the same number the second

will overlay the first. So don’t erase a line in order to replace it—

just type in the new line after it. Erase a line only when your sure

you won't want to go back to it.

4. A line can be temporarily erased either by inserting REM before

the line number or by inserting just the line number on the line after

the one to be erased.

5. If you are going to LOAD an EDITOR tape containing direct com

mands into BASIC the tape must have remote control connected.

6. If REMarks are entered into the EDITOR with-out line numbers

then they will not get loaded into BASIC space. Thus it is possible

to have a lavishly commented EDITOR tape for development use

and a fast loading BASIC tape for the user.

7. You can LOAD part of a program in the EDITOR by putting a

SPACE line before the section wanted and a CONTROL-Z line

after it. Don 't use “T” when exiting the EDITOR, leave it pointing

at the SPACE line before the section you want.

8. Because LOAD does not erase existing lines, a large program can

be built up and debugged by over-laying from a fairly small ED I

TOR space.

An extension of the above techniques allows the writing of long self-

loading over-laid programs operating within the AIM 65 s 4K ram. The

approach is ideal for Automatic Test Equipment (A.T.E.) programs and

if the Editor so wishes 1 will write further on it in the future.

KEN FULLBROOK

England

Ken,

Vou’re right. I didn’t know how to edit BASIC without using the cassette.

Thanks a bunch!!! I ’m sure our readers will appreciate it.

The Editor

SOFTWARE REVIEW
by the EDITOR

How would you like to develop 1802 programs on your AIM 65?

Or, how would you like to be able to set up a library of MACROS which

can be called from your assembly language programs?

If either, or both of these things interests you, then you’ll be interested

in a new software package for the AIM 65 called MACRO.

MACRO is actually a pre-processor that works in conjunction with the

AIM 65 assembler. Its function is to accept a source file that contains

macro calls, expand those macros by looking them up in a library file,

and outputting a new source file with all the macros expanded so that the

AIM 65 ROM assembler can assemble it.

The macro library file must be set up which defines all the macros which

are to be used and must be memory resident at the time the input file is

submitted for expansion, (makes AIM 65 sound like a large machine,

doesn’t it?)

Here’s an example of what it looks like:

SAMPLE M ACRO

INCD POINTR

SAMPLE M ACRO DEFINITION

&INCD

INC ! 1

BNE *+4

INC ! 1 + 1

&

SAMPLE M ACRO OUTPUT

INC POINTR

BNE * + 4

INC POINTR+ 1

(The '& ’ character is used both to start and terminate a macro definition)

Now that last little programming sequence (incrementing a double bvte

pointer) is something 6502 programmers do alot of.

The same technique can be used to set up a cross assembler for most any

other CPU. (6800,1802,8080 etc) Pretty excitin’ stuff!!!

According to the documentation that accompanies MACRO, the mini

mum usable system is an AIM 65 with 2K of RAM, the assembler ROM,

and remote control of least one cassette deck. The price is S15 which

includes documentation and a cassette of the object code. The source

code for MACRO is available either on cassette or as a listing for an ad

ditional $30. (This would enable you to adapt MACRO to your 6502

floppy system)

So far, 1 haven’t found any bugs in the system (I’m good at finding bugs)

and it worked right the first time I tried it.

It’s available from: POLAR SOLUTIONS

Box 268

Kodiak, Alaska 99615

Page 18

TEMPERATURE
CONVERSION PROGRAM

(This program was reprinted from the Rockwell Hobby Club Newsletter

of the Anaheim CA facility).

If you've ever had the need to convert temperatures from Celsius to Fahr

enheit, then here is a program written in AIM 65 BASIC that will make

life a little easier.

Just follow the prompts and type in the start and end values in degrees

Fahrenheit and the program will print out a table of the temperature in

degrees centigrade (Celsius).

PROGRAM

490 INPUT “ START” ; S

492 INPUT “ FINISH” ; F

493 PRINT! “ D E G " , “ D EG .”

494 PRINT! “ FAR” , “C E L S "

495 DEF FNA(A) = INT(A* 100+.5)/10()

500 FOR I = S TO F

505 R = (I-32)*5/9

510 PRINT! I.FNA(R)

515 NEXT I

SAMPLE PRINTOUT

START'.’ 0

FINISH? 8

DEG. DEG

FAR. CELS

0 -17.78

1 -17.22

2 -16.67

3 -16.11

4 -15.56

5 -15

6 - 14.44

7 -13.89

8 -13.33

FOUND HIDING . . .
a BASIC command not found in the manual

Dale Hall

Torrance, CA

Statement Syntax/Function Example

POS POS (expression) Print POS(O)

Returns print head

position 0-19.

requires a dummy

argument.

IN] I RACIIVI

BASIC USR HELPER

Georges-Emlle April

Montreal, Canada

(Ed. note-If you call many machine language subroutines from your
BASIC programs, this routine should be able to save you some time.)
I find it inconvenient to have to use POKE statements every time I wish

to use machine language programs; so I wrote the following set of ma

chine language programs which may be assembled on top of RAM mem

ory, or placed in a ROM somewhere else.

Version shown here is in last page of 4K RAM. See listings.

The programs work in the following manner:

a) Program SETADD

When called, this program takes the argument passed to it by BASIC and

places it in 4 and 5 to be used as an address by next access to “ USR”

function.

b) Program CALLIT

This program uses program SETADD to set up address of “ USR ” then

calls program

The programs are used as follows:

Two subprograms (lines 1 and 2) are written in Basic.

Line 1 sets up 4 and 5 to point to SETADD, then returns.

Line 2 sets up 4 and 5 to point to CALLIT, then returns.

Two situations may arise:

a) It is desired to call machine language program (lets us call it

SUB1), that needs an argument (ARG).

The following sequence will call it the first time:

100 GOSUB 1: X = USR(SUB1): X = USR(ARG)

Where SUB1 is decimal value of address of machine language pro

gram we wish to call. Subsequent calls to the same program can be

made simply by X =USR(ARG) since address has been set up by

line 100.

IVII lltCIIVL Page 19

b) It is desired to call machine language program (SUB2). That needs

no argument (e.g. input data).

The followings will do just that:

150 GOSUB2: X = USR(SUB2)

160 GOSUB 1: X = USR(SUB2): X = USR(DUMMY)

Lines 150 and 160 are fully equivalent but line 150 will execute

faster. As was the case in a), subsequent calls to same program can

simply be X = USR(DUMMY), Where DUMMY can by any valid

variable or constant, since program needs no argument.

It should be noted that program SETADD returns a value of 0 to

basic so that the following sequence does not modify the value of

Y:

170 GOSUB 1: Y = Y + USR(SUBl)

Therefore line 100 could have been written:

100 GOSUB 1: X = USR(SUB1) + USR(ARG)

==0FD8 FIXIT

ROUTINES TO ERSE USE OF USR<X>

;*DF=223,*DB=219

CKB8 JMP (FIX'D ; TRANSFORM DHTH TO FIXED POINT

THE FOLLOWING SETS UP DATA AS ADDPESS OF USR"'. THEN RETURNS

TO BASIC WITH USR(X)=0

SHOULD BE USED WHEN FUNCTION REQUIRES ARGUMENT

'GOSUB!-' SETS UP LINK TO THIS ROUTINE

==9FEE OK

A5A9 LDA EXP

C990 CMP

D80D BNE OK

A5AA LDA MSD

9505 STA LINKH

A5AB LDA MSOi

8594 STA LINKL

A900 LDA *0

85fl9 STA EXP

60 RTS

20D88F JSR FIXIT

A5AC LDA LSD1

8505 STH LINKH

A5AD LDA LSD

4CE70F JMP COMMON

;SEE IF TOO LARGE FOR SIGNED TREATMENT

;IF TOO LARGE)TAKE MSD 6 MSD1 AS DATA

;MAKE USR(X>=0

jTRANSFORM ARGUMENT TO ADDRESS

GO COMPLETE TRANSFER

; THE FOLLOWING S T S UP ADDRESS FROM ARGUMENT

;THEN CALLS ROUTINE

; USED WHEN Nu ARGUMENT IS NEEDED

; G0SUB2 SETS UP LINK TO THIS ROUTINE

=0FFA CALLIT 20DB8F JSR SETADD

606480 JMP (LINK)

==•1600 END . END

ERRORS® 0000

; $DF=222» *FA=250

;CALL ROUTINE

QUICK INSERTION ROM
SOCKETS

Ron Riley

Flint, MI

I recently purchased PL-65 and after switching between BASIC and

PL-65 ROMS several times, I decided to look into using zero-insertion

force sockets. The problem with most of these sockets is that they require

more room than AIM 65 has available. I did finally locate one that fits,

however. It is part #504012459 and is available from WELLS ELEC

TRONICS INC., 1701 S. MAIN ST., SOUTH BEND, IND 46613.

Since the zero insertion sockets gets plugged into the normal ROM

socket, no desoldering is necessary. ROMs can now be swapped in and

out with no danger of damaging the ROM or the socket.

BASIC RECOVERY
PROCEDURE

by Antonio Berges

Dominican Republic

How many times have you entered a rather long BASIC program into the

AIM 65, confidently entered the monitor and then inadvertently hit the

“ 5” key (rather than the “6” key) to reenter BASIC? You saw the

ominous MEMORY SIZE? question and probably thought your BASIC

program was “ down the tubes.”

As long as you don’t press the RETURN key, you’re safe. The program

in memory can be recovered by hitting the ESC key followed by M 01

RETURN / 00 B9. BASIC can now be reentered with the “6” key. What

you’ve done is to replace the JMP SCEA3 at location $0000 to a JMP

SB900.

SNEAK
PREVIEW

Here’s an example of the type of graph

ics you’ll be able to generate with a

program that will be in the next issue

of INTERACTIVE. Stay tuned!!! hull

NEWSLETTER EDITOR
ROCKWELL INTERNATIONAL
P.O. Box 3669, RC55
Anaheim, CA 92803 U.S.A.

Bulk Rate
U.S. POSTAGE

RATE
Santa Ana Calif.
PERMIT NO. 15

